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SUMMARY

When Poiseuille flow occurs in an open-tubular curved pipe, the secondary
currents created by centrifugal forees within the primary current cause a lowering of
the HETP of the primary current for samples carried along.

- An expression is developed for the first approximation of this effect, which
is represented by a term proportional to the fourth power of the primary flow. The
calculations are made for the less involved case of a circular pipe with retentionless
walls, and serve to show that, while measurable effects can be exnected for relatively
high flow-rates, the effect is negligible in the case of the relatively slow flows of
liquids at which optimal chromatographic separations are obtained.

INTRODUCTION

The height equivalent to a theoretical plate (HETP) is a useful concept in both
gas and liquid chromatography because, when this HETP, dimensionally a length, is
multiplied by the distance travelled by an injected sample, it gives the incremental
variance of the spread of that sample which has occurred during that travel. The
HETP of a sample which can be retained by the walls of an open-tubular column is
somewhat higher than when its affinity for the retaining layer is absent, up to V11
times higher for walls with an infinite retaining power, which is the practical case
in distillation processes. However, while the mathematical handling of the un-
retained sample can be readily extended to the case of retained samples, this extension
would introduce additional manipulations which would burden uselessly a discussion
aimed at the analysis of the effect of secondary currents, an analysis that is already
tedious, even if without fundamental difficulties. That is why this study kas been
limited to the case of unarctained samples, and has been limited also to the
derivation of the first term of the presumably infinite series which would give with
substantial rigor the reduction of the HETP of the sample due to secondary
currents.

DISCUSSION

We consider a curved tubular column, that is a curved kollow pipe of cirularc
cross-section and radius r,. The X axis is that of the pipe and the Y and Z axes,
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normal to it and to each other, are oriented honzontaﬂy a.nd vettwally r&pec&vefy.
- The pipe is curved downward within an X—Z plane with a radius of curvature ry, SO
‘that centrifagal forces due tothestmveloqtyaredxreetednpw&rd,mthez
direction. The stream velocity, v, is given at any point by the ¢ expmon I

’. v=2vo(1—5;%z—z) - ST

where v, designates the average stream velociiy in the X difection, so that the
forces per unit volume are given by ,

49v2 (l Y2+22) ' o

fx = sf Y = ,fz = )
wihiere g designates the specific weight of the fuid. ) ’
© A first task will be the determmatlon of the- secondary ﬂow due to the
non-umform_lty of £>.
~ We note at the outset that if we can neglect the fluid compr&ssxbihty the
Iap!acxan of the components vy and v, of this w:ondary flow must vanish, Ze.:

av, aVz . o o ’ - L
oY Tz —0 SR | -9

and we shall look for é velocity potential ¢ such that

a 7] 8 .
=g =55 @

so that eqn. 3 shall be satisfied identically.

Next we consider the viscous forces which relate thm velocity components
to the tensions Ty, Tz respectively normal to the XZ and XY faces of a cube, and
the shear tensxon = tangential to these forces. We have, classxcally, thh wscosxty j73

av, avz : B

(aY ‘ az =TTz | : -~ (5a)

and ‘ , A o
vy |, dvzy , o :

) 2 Al | o 69

74

while these tensions are related to fy and £; by

Oty 13 . o ‘ V
%t ez =0 2
and T
¥, , S
55ty =0 , N (1))

74 ay
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'Eqns. 4- and 5 together gwe

az Lo --'»‘;k-- o B L e cLT - ’
2 31,;”2 =t~ . (72)
asd | o | R |
7 2
2 ~5ve) = ° . 7®)

From eqn. 6 we deduce

Fay—t) , P P, O s ’
avez ‘Tz avr v az oy 0 ®)

and, with eqn. 7

2, 3 AR SR
“\eye™ az* ¥ "9z

or, since jy = 0

e E_LEJ’L:.@’&_{(E%;E’__I) ©)
o

It will be convenient to normalize eqn. 9 by writing

st -
¥ =roy;Z =rez and ¢=592—5°;‘;;-rp (10)

where the factor 1/525 was intraduced to avoid fractional terms in the eventual
expression for 1.

We introduce further the boundary condition that the velocities vanish at the
tube wall, where 3* - z2 = 1; i.e., we have for o

and
P — — - - ) V r

It can be verified by inspection that these three conditions are satisfied by
p= Jr'(:»'z-l-z’—l)2 (93"-:—13?-2 39) SR (12

S VWe must now calculate the HETP while takmg into account the secondary
flow with the normalized potential p. Toward this purpose we recall first that the



diffusion of a sample carried by a gas or a liquid can be represented by a con-
volution of elementary diffusion processes, and that the eveniual result of am
indefinite number of such convoiutions can be represented by a gaussian distribution.

If we have a telegraph line, with continuously distributed series resistance r,
and shunted capacitance ¢, the diffusion of any electrical charge placed on this line
would be governed by the equation

and we know that this equation would be satisfied by, e.g. ‘
_I’sz V
yoO L (14)
213

Likewise, we shall postulate that the sample distribution after a certain time
bhas become gaussian with respect to X, excipt of course thét it bhas travelled a
distance v,f in that time, and that there is a shift E(Y,Z) between the peaks of the
gaussian distribution in the various locations within the pipe cross-section, the
distributions near the pipe center, where travel is faster, leading the distributions
near the pipe wall, and diffusing gradually toward the wall, while the lagging
distributions near the wall diffuse eventually toward the pipe center to be picked up
by the higher velocity of the stream. Mathematically, we are postulating 2 concen-

tration of the form:
X —E(Y.Z)— m:]z
e had ,
C = {15)
vt
where & represents the nnknown dynamic diffusion constant of the sample, connected
to the HETP, £, by the relation

Variance = 2kt—=hL = kvt
or

=2 (16)

where L is the distance travelled in time 7.
We know that the concentration obeys the law

dC 2
T—DAC—O 7 - an

where D designates the (static) diffusion constant of the sample and in which it is
to be understood that the time derivative is the absolute derivative, measured as one
goes along with the sumple. This absolute time derivative can be replaced by its
expression in terms of the time derivative at any one point, 2C/d¢, and the concen-
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tratmn gradxents and veloc:ty components at that pomt, and we re-write eqn. 17 thus.

ac . ac &c
ot +:VX. £33 +VY., Y l._ - D( + + =0

YA
(18)
When its expression from egp. 15 is substituted for C in eqn. 18, fourteen

‘terms are obtained, which come in three groups, each of which is equated to zero
to satisfy eqn. 18. A first group of four terms share the coefficient

IX—E(Y.ZD) —corY
. . " £2 corl
{X E(Ys Z) Vot] <

B2V

and when this group is equated to zero, the common coefficient can be dropped and
we obtain the relation

P D{l L [ 0E(Y, Z) ]2 " [ 9E(Y, Z) ]2} a9)

gY oz

A second group of six terms share the common coefficient

__IX—E(. D) -vul
X — E(Y, Z) — vytle 4ke

Ve

and when this group is equated to zero, this common coefficient can again be
dropped and we obtain the relation

PE(Y,Z) | PEY,Z) v [, YV +2Z?
vt~ G )

1 [9EY.Z) 8E(Y,Z) 1_ v (, Y+ 2? ,

sl wr—m =5 7z —1)+

1 [0E(Y,Z) dp  OE(V,Z) @

D [ ay 3z =~ oz ay] 20)

As to the remaining group of four terms, when equated to zero, it yields an
expression identical to eqn. 10.

The general method followed from here on consists in ﬁrst detemumng a
suitable approximation for E(¥,Z) from egn. 20, then replacing the two squared
derivatives of E in eqn. 19 by their average taken across the entire pipe cross-
section. The physical meaning of these squared expressions in analogous to the
(1/r) (v/x¥* dissipation of energy in a telegraph cable. In the case of fluid flow in pipes
it componds to the increase of entropy mphed by the diffusion of the sample
from regions of high concentration to regions of lower concentration, and the



approximation which consists in replacing these terms in egn. 19 by their average is
increasingly accurate for mcr%smgly extended spmds of the gaussum distributions
of the samples as the flow proceeds™.

The rather laborious task of soivmg eqn. 20 can be eased by normalizing

E(Y,Z), as was done previously for ¢, aad writing

2 2
7. 2= T8 . o, 1) = TS : .
EY,Zy=F5-e0n)="F%-¢ - @
This last expression, together with eqn. 10, permits egn. 20 to be re-written
thus: o
e d%e Oe Oy Oe ayp
_ 2 — b AN &
57 T =200+ z IH'“(y 3z oz ay) 2
where o is 2 dimensionless quantity:

= 525Dpr,
and where p is defined by eqn. 12 as formerly.
As we shall be interested in the cases where o is rather small, a sufficient
approximation for the solution of eqn. 22 can be obtained by writing
e == gy -+ ge, + c2e, 24

e, €, and e, are then given by the successive solutions of

dey Fey u _

_@T_;_ 5z =200 +2—1) (253)
ae1 ael . a€o . a‘w . ae, . atp

3 " ez - oy 9z 8z oy (250)
e, Fe, 02 Oy 0o Oy

52 ez oy 9z 9z oy @39)

and e as given by eqn. 24 will be correct to within terms in ¢°, ete.

* At the 1964 International Gas Chromatography Symposium ia Brighten', Golay pointed out
what appeared:to be a Maxwell Demon-like paradox in chromatography, pamely that with in-
creasingly large separation times vanishingly small energics were required to scparate diiferent kinds
of molecules, therehy decreasing the entropy of the system with vanishingly small effort. The refuta-
tion of this paradox appears to be that while in truth the separation of different molecules spells
a decrease in eatropy, this decrease is obtained at the expense of the higher increase of entropy
which takes place as the various groups of molecules spread in the carrier fluid while separating
from each other, a spread which is gratefully accepted for the sake of the information revealed by
the essential separation of the different groups. This cosastitutes a situation in which the concepts
of the entropy of the information theorist and the cntropy of the ﬁmmodymmm become closely
connected.
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To egn. 25 will be added the boundary condition that the gradient of e
normal to the pipe wall; which has no retention capacity for the sample molecules,
also vanishes, i.e.

?£+z.ig=' for »+22=1 @

It can be verified by inspection that eqn. 25a and 26 are satisfied by

=30"+290*+22—2) @n
with

=ty 0+ 22— 1) @82)
and

e (28b)

The solutions for ¢, and e, from eqns. 25b and 25c, with the condition 26 and
with y given by eqn. 12, become increasingly laborious, but without difficulty. The
solution for e, is given by the eleventh degrze odd polynomial defined by

S i
3360e, = &, &, (—1)'4, RO Pz 29)

where the coefiicient of e; is designed to insure that all A4;; valves are integral
numbers which are given in Table L.

TABLE I
VALUES OF 4,
£ J
0 1 2 3 4 5
() 4634
1 7866 8298
2 7945 17150 9205
3 4011 13545 15057 5523 .
4 819 4116 7434 5796 1659
5 5 205 770 1130 745 185

When the derivatives of ¢; obtained from eqn. 29 and Table I are substituted
in egn. 25¢c, that relation, together with eqn. 26 serves to calculate e,, which is
then given by a polynomial of the form

9 i
55440e, = Z, 2 (—D'e, 2= Pz - (30)
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whcre again the factor 55440 serves to insure that the o, values are mtegral
numbers, which are given in Table H,

7 With the values thus obtained for e;, ¢, and e,, we are in a position to evaluate
the average value of the constant term and of the term in o¢® of (9e/dy? + (9ef5z)*
taken‘overthe pipe cross-section‘. This value will be, according to egn. 24

T - Y B - G

aeo ’ aez . aeo aez ]

+ 2 ay oy ' dz dz GD
as the term 20(0e,/0y - dey/dy + Be,j0z - Ogp/0z) vanishes because e, and e, are of

different parity. An expression giving the average value of y*™z%" over the pipe cross-
section is obtained by changing over to polar coordinates:

y == rcosg; z = rsing

and we have

y=|2r = —Hymzz" dydz = ——ﬂ r@miatl) co5?m o 5in?® @ drdp =

2@mE2,tnl 2 +- n + 1)V’

This expression serves to calculate the right-hand side of egn. 31 and we
obtain

5+ () - @

(—ae—‘) + ae‘) 53 602 %1 5959687 (33b)
and

2 ze; f;iz + f;? ] %ezz) ~—— 3555 _155 g - 235959687 (33¢)

Hence for the lefi-hand side of eqn. 31 we have
- e) (a"’) 15 —0:38390° = (1 18.4362) (39
and with egns. 10, 19 and 21 for the diffusion constant, k:

k=D "" 9 (1 _ 184367 : (35)

Three remarks will be made about egns. 33 and 35.
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- Firstly, for vanishingly small o, eqn. 35 agrcm, as. it shou!d, Wzth the
results of Westhaver® and Taylor.
--.-. .- Secondly, the remarkable similarity betwecn the nght-hand szdes of eqns. 33b
and 33c, the szcond being, in absolute value, equal to exactly twice the first,
suggest the existence of a generating function which, if found, could help derive the
results above more expeditiously and, conceivably, generalize them to include higher
even powers of 6. As for the prime number 5959687 which app&rs n both, no
meaningful significance was found for it.

Thirdly, the right-hand side of equn. indicates that no apprec:able effecton &
can be expected uniess and until o acquires values higher than 0.1.

In order io interpret this, ¢ will be re-written:
- kaiks = OlexRigs . . (36)

o= 48
T 525
where the three dimensionless ratios R,, R, and R; stand for the following
respective quantities:

R, = De_ (€7)

R, is the ratio of the diffusion constant D over the quantity u/fp, which has also the
dimensions of a diffusion constant. In the case of gases, both quantities are of the
order of magnitude of the product of the gas molecules’ velocities by their mean
free paih, that is, for air, e.g., of the order of 0.3 cm?®-sec™%. On the other band, in
the case of liquids, D can vary in the range from 10-5 to 10~7 cm? sec™!, while, in
the case of water, e.g., ¢fo is of the order of 0.01 cm? sec™?; i.e., the ratio R, can be
expected to be found in the range from 103 to 105,

Ry =2 G8)
Vooe
R, is the ratio of the actual average stream velocity over the optimal velocity for
minimal HETP, i.e., the velocity which minimizes the quantity:

_. 5. D Vore
k=2 v T 24D
and which is egual to
V-2 or —as 2
’o
so that
Yo Vg
2 __ . Yo __ [}
48R; =48 2.~ D : : (39)
and finally: _
Ry =2 “0)
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R, is the ratio of the pipe’s inner radius to its radius of curvature, a quantity which
can be expected in the range of 1/39 for cold-formed materials such as stainless
steel, and possibly 1/10 in the case of glass capillaries tightly coiled while hot.

- |t will be readily verified that the right-hand side of eqn. 36 indeed represents
the value of ¢ with the three R ratios as defined.

Since, therefore, values of ¢ of the order of 0.1 should be had before the
secondary flow begins to affect the HETP, that is, since the product R,RZR,
should be of the order of unity or larger, and since the product R, R;is, in the case of
liquids, in the range 1074-107 at best, secondary flow effects cannot be expected for
stream velocities less than two or more orders of magnitude higher than the
velocities which are optimal for liquid chromatographic separations.
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