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SUMMARY 

When Poiseuille flow occurs in au open-tubular curved pipe, the secondary 
currents created by centrifugal forces witbin the primary current ause a ioweriug of 
the HETP of the primary current for samples carried along. 

An expression is developed for the first approximation of this effect, which 
is represented by a term proportional to the fourth power of the primary flow. The 
calcuIations are made for the Iess involved case of a circuiar pipe with retentionkss 
walls, and serve to show that, while measurable effects can be expected for relatively 
high flow-rates, the effect is negligible in the case of the relatively slow’ flows of 
Liquids at which optimal chromatograpbic separations are obtained. 

IN-FRODU(sFION 

The height equivalent to a theoretical plate (HETP) is a usefti concept in both 
gas and liquid chromatography because, when this HETP, dimeusionalIy a Iengtb. is 
multiplied by the distance travelkd by an injected sample, it gives the incremental 
variance of the spread of that sampIe which has occurred during that travel. The 
HETP of a sample which can be retained by the walls of an open-tubular column is 

somewhat higher than when its aSuity for the retaining layer is absent, up to fi 
times higher for walls with an i&kite retaining power, which is the practical case 
in distillation processes. However, while the mathematical handling of the uu- 
retained sample cau be readily extended to the case of retained samples, this extension 
would introduce additional manipulations which would burden usekssly a discussion 
aimed at the analysis of the effect of secondary currents, an analysis that is already 
tedious, even if without fundamental diflicukies. That is why this study has been 
limited to the case of unretained samples, and bas been limited also to the 
derivation of the Grst term of the presumably infinite series which would give with 
substantial rigor the reduction of the HETP of the sample due to secondary 
Currents. 

DIXUSSION 

We consider a curved tubular column, that is a curved hollow pipe of cirularc 
cross-section and radius r,,. The X axis is that of the pipe and the Y and 2 axes, 



where v. designates the average -stream vebcity in the X direction, so that the 
forces per unit volume are given by 

i2) 

where e designat& the SpeSc weight of the fhid. 
A first task di be the dekrminaiion of the -sewidmy h&w_ due TV the 

IlGIHDlifGR3litJf Off,, 

we ZIG& at the GUt%?t that if we cam n&ect tie fluid compresisibility the 
iap&ian Gfthfi?CGnl~Q~tS V, and V, OfthiS SeCmdaryffGwsnuStvaniSb;i.e.: 

aVY %z 
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and we shall look for a w&city potential QI such that 

(3) 

and 



From eqn. 6 we deduce 

It will be convenient to normalize eqn. 9 by writing 

where the fac& l/525 was introd to avoid fractional terms in the eventual 
expression for qx 

We intra&xce further the boundary condition that the velocities van&h 2t the 
tubewd.& where9 -i-S= l;i.e.,wehavefor~p 

(1W 

(1 Lb) 

It can be vedki by kpection that these tb.ree umditions are saMed by 

P=yOr+tzr-l)+.(9~;13zl-39) (12) 

We must now cakxkte-&e-m while t&kg into ixcount the secandary 
fIaw with the normalized potentizd p. Toward this purpose we recall first that the 



diffusion of a sample car&d by a gas or a liquid can be repxesented .by a CQIL- 
volution of elementary diffusion pr ocesses, and that the eventual result of an 
indefinite number of such convoiutions-can he represented by a gaussian distribution. 

If we have a telegrapfr line, witA continuously distributed series &sistance r, 
and shunted capacitance c, the diffusion of any electrical charge placed on this line 
wouId be governed by the equation 

1 5% 2V 

-----==‘a? r aF 03) 

and we know that this equation would he sat&&d by, e.g. 

Xx= 
-(t e y=- 
XG 

(14) 

Likewise, we shah postulate that the sample distribution after a certain time 
has become gaussian with respect to X, exc+t of course that it has travelled a 
distance v,,t in that time, and that there is a shift E(Y,Z) between the peaks of the 
gaussian distribution in the various locations within the pipe cross-section, the 
distributions near the pipe enter, where travel is faster, ieading the distributions 
near the pipe wall, and diffusing gradually toward the wall, while the lagging 
distributions near the wall difTuse eventually toward the pipe center to be picked up 
by the higher velocity of the stream. Mathematically, we are postulating a concen- 
tration of the form: 

_ CX-E<Y.Z~-DOI~= 

CEe 
us 

VT 
iW 

where k represents the unknown dynamic diffusion constant of the sample, connected 
to the HJZP, h, by the relation 

Variance=2kt=hL=hv,t 

or 

h=E 
va . 

(16) 

where L is the distance travelled in time t. 
We know that the concentration obeys the Izw 

dC 
--Lwc=o 

dt m 

where D designates the (static) diffusion constant of the sample and in which it is 
to be =unde~mtood that the time derivative is the absohrte derivative, measured as one 
goes along_with the sample_ This absolute time derivative can be replaced by its 
expression in terms of the time derivative at any one point, X/at, and the concen- 
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traion gradients and velocity ~mponents at that point, and we re-write equ. 17 thus: 

ac ac- ai 
ar -~fvy i vx 

ac 
Yx+._‘Z az 

ax a% .-_-.~(~+.__+_.&=0 

Wken its expression from eqn. 15 is substituted for C in eqn. 18, fourteen 

.teims are obtained, which come in three groups, each of which is equated to zero 
to satisfy eqn. 18. A first group of four terms &are the co&Gent 

cx-FxY.t)-Guc12 

[X - E(Y, z) - v& e- 4&C 

t+ t/? 

and when this group is equated to zero, tke um.uno~ caefiicient can be dropped and 
we obtain the relatiou 

k = D(1 f [ ““‘,‘;“]’ f [ aEr;z’]2} 09) 

A second group of six terms share the common coefficient 

CX-E~Y.Z+-corl* 

[X - E(Y, Z) - v*t] e- 4&Z 

tfi 

and wken tkis group is equated to zero, this common coefiicieut can again be 
dropped and we obtain the relation 

a’E(Y, Z) 
ay2 

+=WJl_ vo 
az2 
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aE(y, z) ap --- aE(y,z) aq 
D ay az az --SF I (zo) 

Astotkeremainin g group of four terms, -when equated to zero, it yields an 
expression identical to eqn. 10. 

The general method followed from here OQ consists in first determining a 
suitable approximation for E(Y,z) from eqn. 20, then replacing the two squared 
derivatives of E in eqn_ 19 by tkeir average taken across the entire pipe cross- 
section. The physical meaning of tkese squared expressions in analogous to the 
(I/r) (v/x)” &ssipation of energy in a telegraph cabIe. In the case of fluid flow in pipes 
it corresponds to the increase of entropy implied by the diffusion of the sample 
from regions of high concentration to regions of lower concentration, and the 



approximation. which cons&s in replacing these terms in a@. 19 by tick kxage is 
in~giy accllcate for in cxeasingiy extended spreads of ffie gmssim t3iSHXEtiOnS 

of the sjlmpks &s the flew proceeds*- 
‘I’he rathex k&orious -task of solving eqn. 20 can be eased by normSzing 

E(Ya, as was done previously for q~, aad writig 

This last expression, together with eqn. IO, permits eqn. 20 to be re+wri*n 
thus: 

where cr is a dimensionkss quantity: 

and where p is defined by eqn. 12 as formerly. 
As we shall be interested in ffie cues where c is rather small, a su.&ient 

approximation for tke solution of eqn. 22 can be obtained by writing 

e=eo+ Gel t de2 (24) 

e,,, e, and e2 are then given by the suaxssx ‘ve soIutions of 

and e as given by eqn. 24 will be uxrect to within terms in ti, e&z. 



To eqn, 25 wiI.l be_ added the boundary co~cIiti0~ that the gradient of e 
normal to the pipe waI& wbicb has no retention capacity for the sample moIecuIes, 
also vaQish= Le. 

y aY 
.de+pz& 0 for y’fzZ=f 

It can be verified by inspection f&at eqn. 25a and 26 are satisfkd by 

and 

The solutions for e, and e2 from eqns. 25b and 25c, with the condition 26 and 
with p given by eqn. 12, become increasingly Iaborious, but without difficulty. The 
solution for e, is given by the eleventh degree add poIynomiaI defined by 

where the cueEcient of e, is designed to insure that aII ALI valves are integral 
numbers which are given in Table I. 

-l-ABLE I 

VALUJZS OF A,, 

i i 

0 I 2 3 4 5 

0 4634 
1 7866 8298 
2 7945 17150 9205 
3 4011 13545 15057 s.szs 
4 819 4116 7434 5796 ‘1659 
5 5 2us 770 1130 745 185 

When the derivatives of e, obtained &om eqn. 29 and Table I are substituted 
in eqn. 25c, that relation, together with eqn. 26 serves to calculate e,, which is 
then given by a polynomiaI of the form 

(30) 
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where. again the factor 55440 Serves to insure that the q, values are integral 
numbers, which are given in Table %I. 

Withttre values thus obtained for e, e, and e2, we are in a position to evaluate 
the average value of tie constant term and of the term in 02 of @&3Ja f (&+z)” 
takenover the pipe cross-section: T&is value will be, according to eqn. 24 

(31) 

as the term 2a(&& - &#y + &,laz - ae,#z) vanishes because e. and eI are of 
di&rent parity. An expression giving the average value ofyz”Zr” over the pipe cross- 
section is obtained by changing over to polar coordinates: 

Y =rcosQI;z=rsiq3 

and we have 

(32) 

This expression serves to calculate the right-band side of eqn. 31 and we 
obtain 

(3s f ($r = -!__ . 23 . 5959687 
33602 11 

(33G 

(33b) 

and 

23 - 3 -5959687 (33c) 

Hence for the left-hand side of eqn. 31 we have 

(%z c (3’ m f - 0.383902 = f (1 - 18.43$) 

and with eqns. 10, 19 and 21 for the diffixion constant, k: 

MI+-& -18.4302) 

(34) 

(35) 

Three temarks will be made about eqns. 33 and 35. 



Secondly,-the remarkable simifarity betwe& & rig&-hand sides-ofeqns, 33b 
and 3% the c--&d beings in abso!ute vzfue, equal to exactly twict~the firs*, 
suggest tk.exis&ze of a generat& fix&on which, if found, could help derive the 
results above more expeditiousiy and, conceivably, geuerake them to inckde higher 
even powers of u. As for th& prime numbeti 5959687 w&h appears in both, no 
meaningfirl s&n&&~= Was found for it. 

Thirdly, the right-hand side of eqn_ indicates that no appreciable effect on k 
can be expected u&s and u&l ts acquires values higher &a~ 0.1. 

In order 20 interpret this, 0 wiU be re-kitten: 

where the three dimensio&k ratios R,, Rz and R3 stand for the following 
respective quantities : 

RI dk 
P 

(37) 

RI is the ratio of the diffusion constant D over the quantity p/e, which has also the 
dimensions of a diffusion constaM_ In the case of gases, both quantities are of the 
order of magnitude of the product of the gas mokuks’ velocities by their mean 
free pa*& that is, for air, e.g., of tke order of 0.3 cmz-seCt. On the other hand, in 
the case of liquids, D can vary in the range from 10V5 to lo-’ cm2 set-‘, while, in 
the case of water, e.g., p/e is of the order of 0.01 cm2 see-‘; Le., the ratio RI can be 
expected to be found in the range from IOe3 to LO-‘. 

.R2 =2 (38) 

Rz is the ratio of ffie actual average stream velocity over the optimal vekcity for 
minimal HETP5 Le., the velocity which minimizes the quantity: 

and which is equal to 

(39) 

WU 

and fkilIy: 

R3 = + 
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& is the ratio of the pipe’s inner radius to its radirrs of curvature, a quantity which 
cipn be expezted in the range of l/30 for cold-formed materials such as stainless 
steel, and possibly l/10 in the case of glass capibies tightly coiled while hot. 

It will be readily ve&ed that the right-hand side of eqn. 36 indeed represents 
the value of cs with the three R ratios as de%xd. 

Since, therefore, vabes of Q of the order of 0.1 should be had before the 
secondary flow begins to afikct the HEW, that is, since the product R,R$R, 
should be of fhe order of unity OF larger, and since the product R,R, is, in the case of 
liquids, in the range 10 “4-10-6 at best, secondary flow e&c& cannot be expected for 
stream velocities kss than two OF more orders of magnitude higher than the 
velocities which are optimal for liquid chromatographic separations. 

1 M. J. E. Golay. in _A. GoIdup (Editor), Gar Chmmfugrqhy 1964, bstitute of Petroleum, Lon- 
don. 196.5, pp. 143453. 
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3 G. Taylor, Pmt. Roy. Sac. Lo&n, Ser. A. 225 (1956) 67. 


